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Fourier or Bessel transformations of highly oscillatory 
functions 

Q Haidert and L C Liut 
t Physics Department, Fordham University. Bronx, New York 10458, USA 
t Theoretical Division, Lm Alamos National Laboratoly, Los Alamos, NRU Mexico 
87545. USA 

RcceiveLI 22 May !Pn, i!! !loa! !e!?! 25 A.g"s! !99? 

AbslracL An algorithm for integral transformation of highly oscillatoly functions is 
presented. I t  is a generalization of the 'standard' Gaussian quadrature method but 
has the vinue thal the usual tedious tern of convergence of the numerical results is 
not necessary. The effectiveness and accuracy of the algorithm is tested for bath large 
arguments and higher orders of the Bessel function. 

1. Introduction 

In many physics and chemistry problems, one frequently encounters integral trans- 
forms (e.g. Fourier or Bessel transforms) of the form f ( q )  = J j n ( q z ) g ( z ) z 2 d z ,  
where j , (z) is the spherical Bessel function of order n and g is a function depending 

nucleus, g(z) will be a transition density distribution. The function I f ( q ) I 2  then rep- 
resents the response of the matter to external stimulation, or the momentum transfer 
q. In most of the cases, these transformations cannot be done analytically and one 
has to rely entirely on numerical methods. However, for large q or higher order 
Bessel functions (i.e. large n), the integrand becomes highly oscillatory and thereby 
presents serious difficulties in obtaining numerical convergence of the integration. 

Out of a variety of applicable numerical integration methods, the one most 
commonly used for doing integral transformation is the 'standard' Gaussian 
quadrature method [I]. In using the Gaussian method, one has to be extremely 
careful in choosing the number of Gaussian points and the  corresponding weights. A 
pnon it is very difficult to determine how many points and weights should be used 
in order to achieve convergence to the exact result. This problem becomes more 
acute if the integrand cannot be cast in an analytical form and, as mentioned earlier, 
oscillates a lot. 

This paper describes and demonstrates an algorithm, termed the 'partitioned' 
Gaussian method (PGM), that is free from the tedious tests of convergence. The 
method may be viewed as a spccial case of adaptive quadrature [2] and is particularly 
useful if the function that is to be integrated has a large number of zeros. The 
algorithm can be easily implemented on personal computers and used for solving 
various kinds of physics or chemistly problems [3]. The method is described briefly 
in section 2. Numerical examples are given in section 3 and in section 4, the results 
are summarized. 
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2. 'Partitioned' Gaussian method 

We are interested in numerical evaluation of integrals of the type 

Q Haider and L C Liu 

where K is the kernel and g(  z) is the function that is to be integral transformed. 
The upper limit (2,) of the integration could be either finite or infinite. In most 
physics and chemistry problems, I" = 0 and z, = 03, or I,, = 0 and z, = a, where 
a is a constant In the first case, the function g(z) usually goes to zero exponentially 
at large 2. Very often, K is a Bessel function or functions related to Bessel function 
[4]. Since Bessel functions are oscillatory, the integrand / (z,y)  = l i (z ,y)g(z)  will 
also be oscillatory even when g(  z) is smooth. 

The essence of the PGM that is being propased in this paper is to carry out the 
integration in equation (1) separately for-each oscillation segment of I ( z ,  y). We 
form, therefore, the following sum: 

i=l j = 1  

where N is the number of Gaussian points in each segment of integration [Xi-l, Xi]. 
The Xi (I = 1,2,. . . , N )  are the location of the zeros of the  integrand, N being 
the number of zeros. Furthermore, Xu 5 zu and S,,, 5 2,. The z j  and wj  are, 
respectively, the corresponding abscissae and weights to he used in each segment. 
The number of zeros and Xi can he determined easily by searching with a very fine 
mesh size (c) where the product /(z,y)/(z f e , y )  is less than zero. In the case 
I, = 00, we choose a suiiicientiy iarge vaiue for z,(= z,,,) such that the integrand 
I(I, y)  for z > zmix is negligible. 

The implementation of this algorithm becomes very simple if the integrand 
oscillates periodically. Let us first consider the case with zu = 0 and zm equal to a 
multiple of the period P. The number of zeros is given by N = x,, , /P.  The upper 
and lower limits of the integration segments then become, respectively, A'i = P and 
X i - l  = ( i  - 1)P. Numerical tests have shown that when the PGM is applied to an 
integrand that has either a perfect periodicity (e.g. sin z) or a quasi-periodicity (e.g. 
j,,(z)), the Xi need not be exactly the zeros of the integrand. Consequently, for any 
given zu and properly chosen zmaI, the algorithm of equation (2) can be implemented 
with the choice N = (z, - z u ) / P ,  Si = z,+ ( i -  l)P ( i  = 1 , 2 , .  , ,,N) and 
xNtl  = x m a .  

It is easy to see that the PGM puts equal emphasis on the integrand between any 
two successive zeros, no matter how many Gaussian points are used. This feature 
cannot be easily realized with the 'standard' Gaussian technique where the use of to0 
few points in the interval [z,,, z,,,] may result in ignoring the fine structure of the 
integrand. 

g .  

3. Numerical examples 

The versatility and accuracy of the PGM is demonstrated in this section by considering 
a familiar example from physics. It is the Fourier transformation, which is also called 
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the integral Bessel transformation, and is so often encountered in nuclear reactions 
and structure theories [5,6]. ’lb compare the numerical results with the exact ones, 
we choose the integrand for which the integration can also be done analytically. 

We consider the three-dimensional integral 

f(q) = /d re i9“g( r )  (3) 

where i = a. The radial part of the nth multipole decomposition of equation (3) 
is given by 

where j n ( q r )  is the spherical Bessel function of integer order n and g ( r )  can 
represent a variety of quantities, e.g. nuclear charge density distribution in nuclear 
physics [7], spherically averaged oneelectron density in atomic physics (81. etc. For 
g ( r )  we choose the harmonic oscillator (or Gaussian) function 

g(r)  = rme-azrZ (5) 

where a is the oscillator constant. The integration in equation (4) can then be done 
analytically only if m = n or RL = n + 2. The result is 

Numerical evaluation of equation (4) with g ( r )  given by equation (5) has been carried 
out for different values of q and different orders (n = m) of j,, using both the 
‘partitioned‘ and ‘standard’ Gaussian methods. The Bessel functions were calculated 
using Miller’s method (9.10). All calculations were done in double precision on a 
CDC-7600 computer. The results are compared with the  exact ones in tables 1 and 2. 
For both the PGM and the ‘standard’ method, the values of a and rmlX (upper limit 
on the integral) are 0.556 fm-’ and 16 fm, respectively (61. As mentioned in section 
2, the number of subintervals for the PGM is determined by the number of zeroes 
in the integrand which, in turn, depends on n and q. Furthermore, the number of 
Gaussian points for the ‘standard’ method is taken equal to the number of points per 
subinterval of the PGM. Thus the PGM uses more points than the ‘standard’ method. 
In figure 1 the integrand r2 j , (qr )g( r )  is shown for q = 5 fm-’ and m = n = 5. 
For this integrand, the number of subintervals is 9. 

The following features are noticeable from the tables. In all cases, the calculations 
using the PGM converge to the exact results with only one trial requiring 8 points per 
subinterval. (The total number of points ranges between 72 and 120, depending on 
the order and argument of the Bessel function.) With the ‘standard’ Gaussian method, 
convergence in most of the cases is obtained after four trials requiring at least 64 
points. One needs even a larger number of trials as r,,, is increased (table 3). 

The,PGM has also been tested for other forms of g ( r )  and finite integration limits. 
One such integral is 
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Table 1. Comparison of the numerical results with lhe exact ones for q = 5.0 fm-1 
and rmax = 16.0 fm (upper limil on Ihe inlegral). n and Ng are, respectively, the 
order of the Ewe1 funclion and number of Gaussian poinls per SubinleNal of !he PGM. 
The number of points used for Ihe enlire range of the 'standard' method is Ne m e  
exponent m in equation ( 5 )  i s  equal to n. 

" N8 
5 8  

I6 
32 
64 

25 8 
I6 
32 
64 

50 8 
16 
32 

~ ~ 

'Partitioned' 'Standard' Exact 

1.60018 x - 7 . 7 3 2 1 6 ~  ioo 1.60018 10-4 
!.6M!B x !!F !.?E95 x !S' 
l.60018 x IO-' 5.84936 x 10-4 
1.60018 x IO-' 1.6m18 x 10-4 
2.04034 x IO" -1.43341 x IO" 2.04034 x IO" 
2.04034 x 10" 8.26505 x IOl4 
2.04034 Y IO" 2.03626 x IOt4 
2.04034 x IO" 2.04034 x IOl4 

8.74222 X 9.90527 x 10% 8.74222 x IOM 

8.74222 x 10% 8.74222 x Id6 
8.74222 x ioJ6 9.27291 x 1036 

Table 2. The same as table 1 but far q = 7.5 fm-l. 

n N. 'Partitioned' 'Standard' Exact 

25 8 6.30691 x 10' -8.17068 x IO" 6.30691 x 10' 
I6 6.30691 x IO' -4.88461 x 1OlJ 
32 6.30691 x IO1 1.08186 x IO1' 
64 6.30691 x IO1 6.30691 x 10' 

50 8 6.82364 x 10" -2.08633 x 6.82364 x 10% 
16 6.82364 x 10)' 1.48664 103' 
32 6.82364 x IO" 1.27468 x IO3i 
64 6.82364 x 10" 6.82364 x 10'' 

The resuhs for this equation are identical to those with the harmonic oscillator form 
for g(r) and are, therefore, not presented here. 

It is instructive to examine as to why the 'standard' method requires several trials 
to make the numerical results stable. This can be done most easily by an inspection of 
figure 1. From the figure it can be seen that the integrand is negligible between P = 0 
and T = 1 and for T > 7. Since in the 'standard' method the Gaussian points are 
spread in a definite way over the entire range of the integrand [O,rmsX], a small Ng 
and large T,,,.. tends to pick the integrand where it is negligible and avoid it where 
it is substantial and has detailed structure (e.g. between T = 3 and 4). This kind 
of problem is avoided in the PGM by forcing the integration between the successive 
zeros, at the expense of a moderate increase of computing time. For example, for 
q = 5 fm-' and n = 5, the total CPU time on a CDC-7600 computer taken by the  
PGM is 0.16 s, as opposed to 0.10 s taken by the 'standard' method. Although the 
'standard' method requires less computational time, it is clear that one has to rely 
to a large extent on intuition or carry out extensive tests to ascertain that the results 

mnn..:nnr..~ in -c  +ha mie..~nr:..-r +I." I._n I.,*:" FA*... " r  -,-\ :- ..-* ~ r ~ ~ . ~ ~ ~ .  
a.- L " c a " " 1 6 L Y 1 .  111 ,,,"I, U, L l l C  C'l IC"I( IL,U,IJ L I I G  'l""'y"c 1"1111 V L  y,, , 0 ll". I\1IV".., 

the application of the 'standard' Gaussian method can then be more problematical. 
Such extensive tests or intuition are not required if one uses the PGM described in 
this paper. 

Simple but powerful schemes for numerically evaluating integrals of the type given 
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Figure 1. m e  integrand j,(y~)rm+*e--oZrP as a function of r 

Table 3. T h e  same as lable 1 but for = 32.0 fm 

n N ,  'Partitioned' 'Slandard' Exact 

S 8 1.60018 x I O w 4  2.67961 x IOo 1.6w 18 x 10-4 
16 l.hOOl8 x IO-' -8.301 67 x 10' 
32 1 . 6 0 0 1 8 ~  1.18352 x loo  
64 1.60018~ IO-' 1 . 6 0 2 2 9 ~  IO-' 
80 1.60018 x IO-' 1.60018 x 

by equation (4) have also been developed by Sagar er a1 Ill], but only for the zeroth- 
order Bessel function, i.e. j,( qr)  = sin( qr) /qr ,  which is pertinent for calculations in 
atomic physics and quantum chemistry. in contrast, the method deveioped by us is 
valid for any order of the Bessel function. I t  is, therefore, useful for nuclear physics 
calculations also. 

We could have performed the integration by partitioning other methods, e.g. 
Simpsons', trapezoidal, etc, between successive zeroes of the integrand. However, in 
order to achieve the same numerical accuracy as obtained with the PGM, we would 
reqiiiie a vev liie mesh she iheie3j iiiCieiisiiig the coiiipi;:ational h e  siibstantiallji, 
in some cases by as much as an order of magnitude. The PGM, therefore, has the 
advantage that it is faster than the partitioning of other methods mentioned above. 

4. Summary and conclusions 

In this work a simple but highly accurate method for numerically integrating functions 
which can have many oscillations has been described. It is a generalization of the  
'standard' Gaussian method and reduces to the 'standard' method if the integrand 
not oscillatory. The applicability of the method has been tested by considering Fourier 
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transformation as an example. It is found to yield very good results for substantially 
large orders and arguments of the Bessel function. 

The integrands considered in this work are all analytic and have a convergent 
Bylor series at each point. The PGM might pose difficulties if the integrands are 
non-analytic. Further, the method will fail if the integrand has an infinite number 
of zeros in the interval between 0 and 03. However, such integrands are seldom 
encountered in physics or chemistly problems. It should also be mentioned that the 
convergence rate of the PGM is a little slower than the 'standard' Gaussian method. 

The advantage of the PGM is that one does not have to test the numerical 
convergence integrand by integrand. The use of a small number of Gaussian points for 
each oscillation segment will ensure convergence to the correct result. This avoidance 
of the necessity for pre-testing the integration represents a mluable feature of the 
PGM, especially in the context of a multi-purpose computer code where the integrands 

oscillatoly structure of the integrands cannot be pre-determined once and for all. 

Q Haider and L C Liu 

are 10 he SPpp!iC$ ?Lua!!y in the form of .hlnction sllhprogramsi hy the 1xen 2nd &e. 
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